Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4‐Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes
نویسندگان
چکیده
Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m-2 at 2 W m-2 to switch due to a high coloration efficiency (590 cm2 C-1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale.
منابع مشابه
Poly(tris(4-carbazoyl-9-ylphenyl)amine)/Three Poly(3,4-ethylenedioxythiophene) Derivatives in Complementary High-Contrast Electrochromic Devices
A carbazole-based polymer (poly(tris(4-carbazoyl-9-ylphenyl)amine) (PtCz)) is electrosynthesized on an indium tin oxide (ITO) electrode. PtCz film displays light yellow at 0.0 V, earthy yellow at 1.3 V, grey at 1.5 V, and dark grey at 1.8 V in 0.2 M LiClO4/ACN/DCM (ACN/DCM = 1:3, by volume) solution. The ∆T and coloration efficiency (η) of PtCz film are 30.5% and 54.8 cm2·C−1, respectively, in ...
متن کاملFlexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions.
We study in detail here the application of transparent, conductive carbon single-wall nanotube (SWNT) networks as electrodes in flexible organic light-emitting diodes (FOLEDs). Overall comparisons of these networks to the commonly used electrodes poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and indium tin oxide (ITO) are made, and SWNT networks are shown to have excellen...
متن کاملAll-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator
We demonstrate a glucose sensor based on an organic electrochemical transistor (OECT) in which the channel, source, drain, and gate electrodes are made from the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS). The OECT employs a ferrocene mediator to shuttle electrons between the enzyme glucose oxidase and a PEDOT:PSS gate electrode. The device...
متن کاملElectrical conductivity of poly(3,4-ethylenedioxythiophene):p-toluene sulfonate films hybridized with reduced graphene oxide
Reduced graphene oxide-poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (rGO-PEDOT:PTS) hybrid electrode films were synthesized directly on a substrate by interfacial polymerization between an oxidizing solid layer and liquid droplets of 3,4-ethylenedioxythiophene (EDOT) produced by electrospraying. The EDOT reduced the graphene oxide by donating electrons during its transformation into PED...
متن کاملLow Work-function Poly(3,4-ethylenedioxylenethiophene): Poly(styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells
UNLABELLED Low-work-function poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT PSS) modified with polyethylenimine (PEIE) was used as an electron transport layer (ETL) for polymer solar cells (PSCs). A thin layer of PEIE film was spin-coated onto the surface on the PEDOT PSS films, thus substantially changing their charge selectivity from supporting hole transport to supporti...
متن کامل